### **Optical Properties of Solids: Lecture 5**

### **Stefan Zollner**

New Mexico State University, Las Cruces, NM, USA and Institute of Physics, CAS, Prague, CZR (Room 335) <u>zollner@nmsu.edu</u> or <u>zollner@fzu.cz</u>

These lectures were supported by

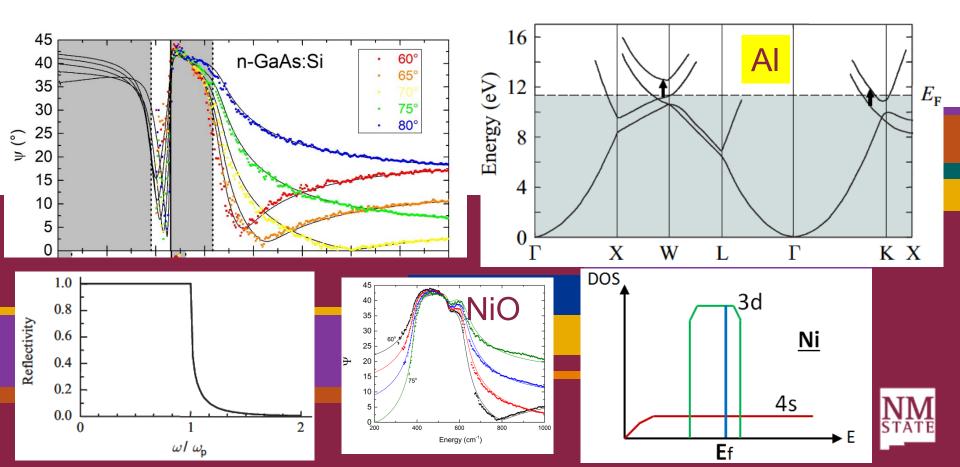
- European Union, European Structural and Investment Funds (ESIF)
- Czech Ministry of Education, Youth, and Sports (MEYS), Project IOP Researchers Mobility – CZ.02.2.69/0.0/0.0/0008215

Thanks to Dr. Dejneka and his department at FZU.



EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education




http://ellipsometry.nmsu.edu

NSF: DMR-1505172



# **Optical Properties of Solids: Lecture 5+6**

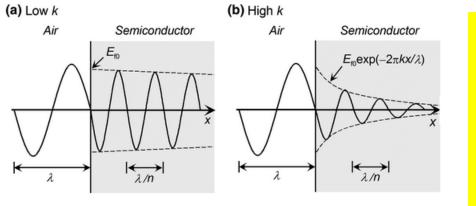
- Lorentz and Drude model: Applications
- 1. Metals, doped semiconductors
- 2. Insulators
- Sellmeier equation, Poles, Cauchy dispersion



# **References: Dispersion, Analytical Properties**

Standard Texts on Electricity and Magnetism:

- J.D. Jackson: *Classical Electrodynamics*
- L.D. Landau & J.M. Lifshitz, Vol. 8: *Electrodynamics of Cont. Media*


#### **Ellipsometry and Polarized Light:**

- R.M.A. Azzam and N.M. Bashara: *Ellipsometry and Polarized Light*
- H.G. Tompkins and E.A. Irene: Handbook of Ellipsometry (chapters by Rob Collins and Jay Jellison)
- H. Fujiwara, *Spectroscopic Ellipsometry*
- Mark Fox, Optical Properties of Solids
- H. Fujiwara and R.W. Collins: Spectroscopic Ellipsometry for PV (Vol 1+2)
- Zollner: *Propagation of EM Waves in Continuous Media* (Lecture Notes)
- Zollner: Drude and Kukharskii mobility of doped semiconductors extracted from FTIR ellipsometry spectra, J. Vac. Sci. **37**, 012904 (2019).

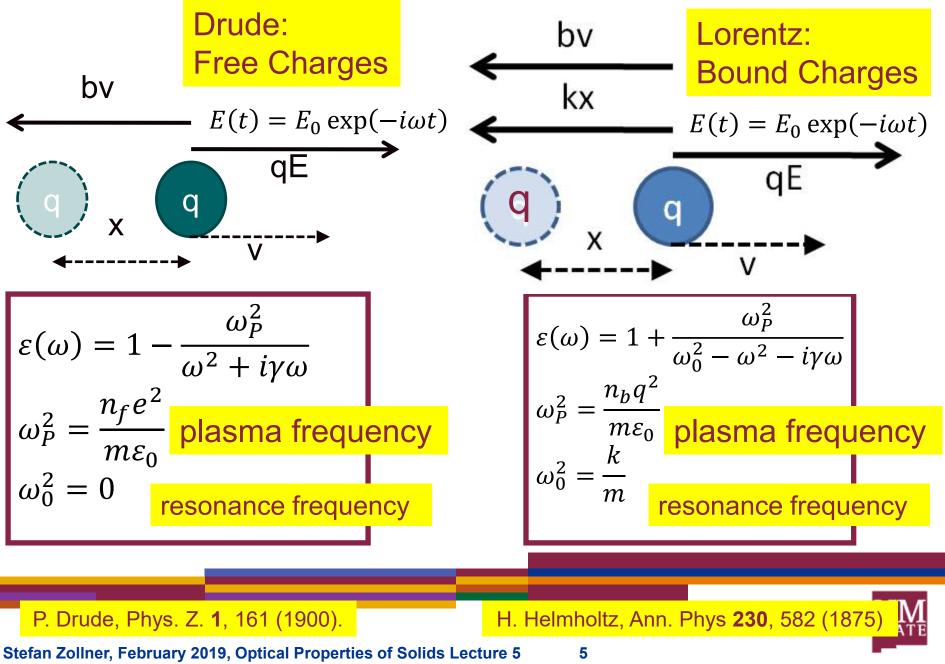


# **Question: Inhomogeneous Plane Waves**

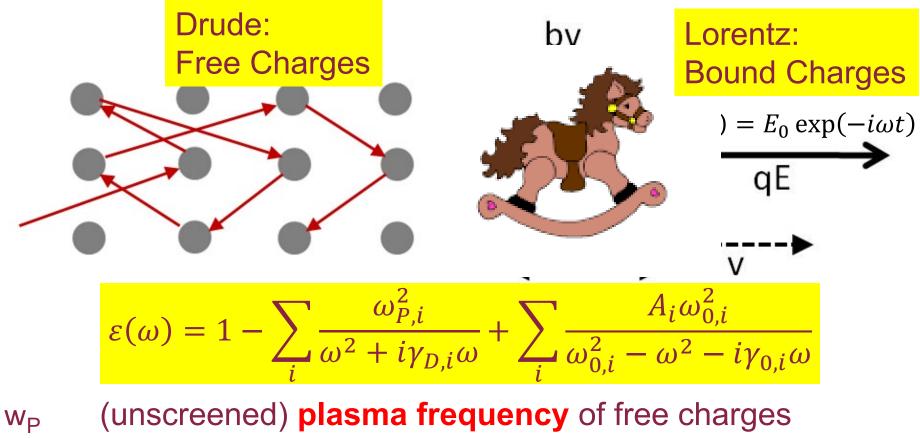
#### Plane waves do not solve Maxwell's equations, if $Im(\varepsilon) \neq 0$ .



The amplitude of the plane wave decays in the medium due to absorption. Snell:  $\frac{\sin \theta_1}{\sin \theta_2} = \frac{n_1}{n_2}$ 


Inhomogeneous plane wave (aka generalized plane waves):  $\vec{E}(\vec{r},t) = \vec{E}_0 \exp\left[i\left(\vec{k}\cdot\vec{r}-\omega t\right)\right]$ 

Allow complex wave vector: 
$$\vec{k} = \vec{k}_1 + i\vec{k}_2 = k_1\vec{u} + ik_2\vec{v}$$


$$\vec{E}(\vec{r},t) = \vec{E}_0 \exp\left[-\vec{k}_2 \cdot \vec{r}\right] \exp\left[i\left(\vec{k}_1 \cdot \vec{r} - \omega t\right)\right]$$
  
Attenuation Propagation

Mansuripur, *Magneto-Optical Recording*, 1995 Stratton, *Electromagnetic Theory*, 1941/2007 Landau-Lifshitz § 63, Jackson, Clemmow Dupertuis, Proctor, Acklin, JOSA **11**, 1159 (1994).

#### **Drude and Lorentz Models: Free and Bound Charges**

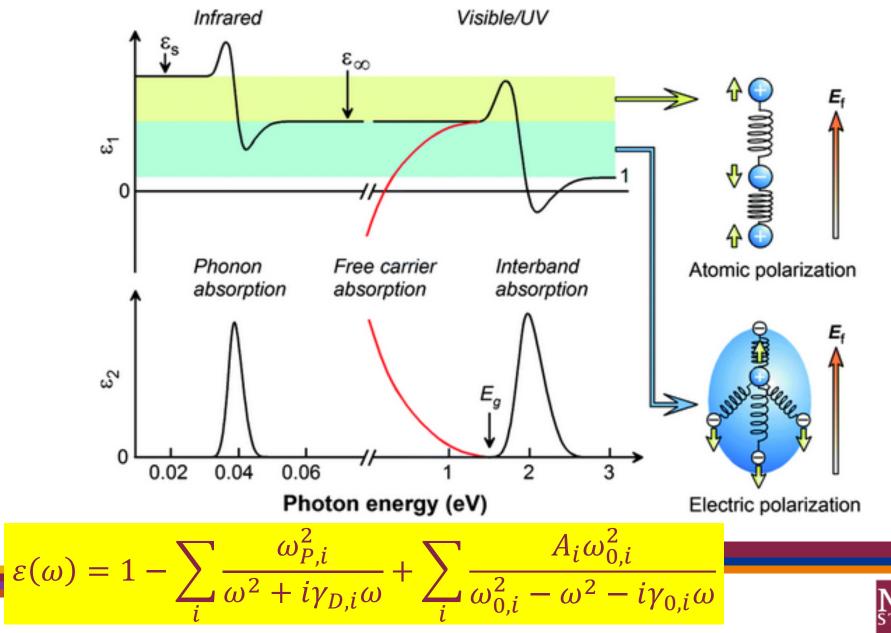


## **Drude-Lorentz Model: Free and Bound Charges**



- w<sub>0</sub> **resonance frequency** of bound charges
- $g_D, g_0$  broadenings of free and bound charges
- A **amplitude** of bound charge oscillations (density, strength)

6


Discuss plasma frequency trends.

 $n_f e^2$ 

me



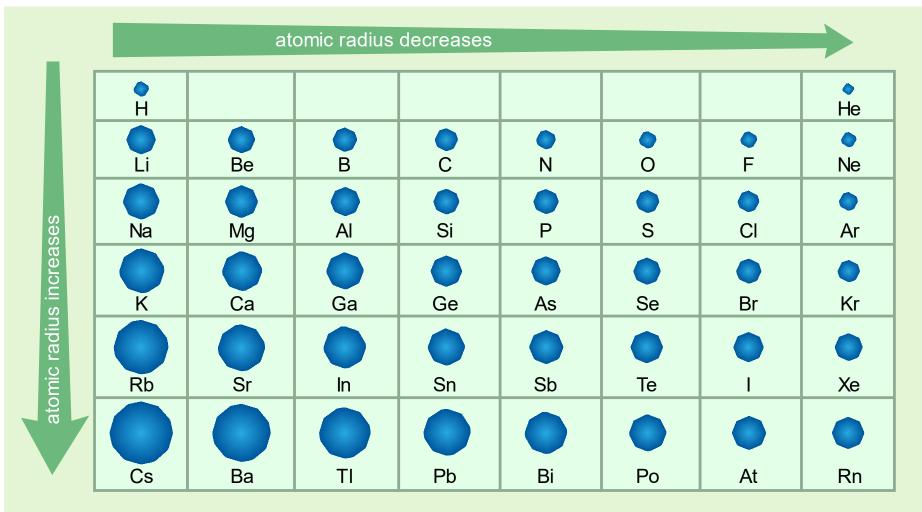
### **Drude-Lorentz Model: Free and Bound Charges**



Stefan Zollner, February 2019, Optical Properties of Solids Lecture 5

7

#### **Metals**


|                                                                                                                    | 1                                      | 2                                        | 3                                   | 4                                                                                               | 5                                                          | 6                                                                                                         | 7                                            | 8                                               | 9                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                                              | 12                                        | 13                                        | 14                                                             | 15                                                                              | 16                                         | 17                                      | 18                                              |           |
|--------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------|-------------------------------------------------|-----------|
| 1                                                                                                                  | 1 1<br>H<br>Hydrogen<br>1.00794        | Atomic #                                 | С                                   | Solid                                                                                           |                                                            |                                                                                                           |                                              | Metals                                          |                                                 | and the second s | Nonmet                                          | als                                       |                                           |                                                                |                                                                                 |                                            |                                         | 2 2<br>He<br>Helum<br>4 002002                  | К         |
| 2                                                                                                                  | 3 = 1<br>Li<br>Littium<br>6.941        | 4 2<br>Be<br>Berylium<br>9.012182        | Hg                                  | Liquid<br>Gas                                                                                   |                                                            | Alkali metals                                                                                             | hme                                          | anthanoic                                       | Transition<br>metals                            | Poor metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Other                                           | Noble gases                               | 5 <sup>8</sup><br>B<br>Boron<br>10.811    | 6 <sup>2</sup> / <sub>4</sub><br><b>C</b><br>Carbon<br>12.0107 | 7 6<br>N<br>Nitrogen<br>14.0067                                                 | 8 <sup>2</sup><br>0<br>0xygen<br>15.9994   | 9 †<br>Fluorine<br>18.9984032           | 10 <sup>2</sup><br><b>Ne</b><br>Neon<br>20.1797 | K<br>L    |
| 3                                                                                                                  | 11<br>Na<br>Sodium<br>22.95976928      | 12 %                                     | Rf                                  | Unknow                                                                                          | 'n                                                         | tals                                                                                                      | A lais                                       | ctinoids                                        | 3                                               | tals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>o</u>                                        | ses                                       | 13 2<br>Al<br>Aluminium<br>28.9815388     | 14 <sup>2</sup><br>Silcon<br>28.0865                           | 15 2<br>P<br>Phosphorus<br>30.973762                                            | 16 8<br>Sulfur<br>32.065                   | 17<br>CI<br>Chiome<br>35.453            | 18<br>Argon<br>39:948                           | K L       |
| 4                                                                                                                  | 19 28<br>K Potassium<br>39.0963        | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | 21 5<br>Scandium<br>44.955912       | 22 30 22<br><b>Ti</b><br>Titanium<br>47.887                                                     | 23 <sup>2</sup><br>V <sup>11</sup><br>Variadium<br>50.9415 | 24 28<br>Cr 13<br>Chromium<br>51.9961                                                                     | 25 13<br>Mn<br>Manganese<br>54.938045        | 26 \$<br>Fe                                     | 27 18 18 2<br>Cotalt<br>58.933195               | 28<br>Ni<br>Nickel<br>58.8934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29<br>Cu<br>Copper<br>63.540                    | 30 g<br>Zn<br>2ino<br>65.38               | 31 5<br>Ga<br>Gallum<br>69.723            | 32<br>Ge<br>Gemanium<br>72.64                                  | 33 28<br>As<br>Arsenio<br>74.92180                                              | 34<br>See<br>Selerium<br>78.96             | 35 19<br>Br<br>Bromine<br>79.994        | 36 <sup>28</sup><br>Kr<br>Krypton<br>63.796     | KLMN      |
| 5                                                                                                                  | 37<br><b>Rb</b><br>Rubidium<br>85.4678 | 38<br>Sr<br>Strontum<br>87.62            | 39 88<br>Y 18<br>Ytthum<br>88.90585 | 40 18 18 18 18 18 18 18 18 18 18 18 18 18                                                       | 41 58<br>Nb 102<br>Nicoburn<br>82,90538                    | 42<br>Molybdenum<br>95.96                                                                                 | 43<br><b>Tc</b><br>(97.9072)                 | 44 8<br>Ru<br>Rutherium<br>101.07               | 45 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19 | 46<br>Pd<br>Paladium<br>108.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 47<br>Ag<br>Stver<br>107.8882                   | 48 58 58 58 58 58 58 58 58 58 58 58 58 58 | 49 18<br>In 18<br>Indium<br>114.818       | 50 58<br>Sn 54<br>Tin 118.710                                  | 51 \$<br><b>Sb</b> \$<br>Antimony<br>121.760                                    | 52 50<br>Tellunum<br>127.60                | 53 8<br>6<br>100<br>125.90447           | 54 18<br>Xenon<br>131 293                       | KLANO     |
| 6                                                                                                                  | 55<br>Cs<br>Caesium<br>132.9054619     | 56 18<br>Ba 18<br>Balum<br>137,327       | 57–71                               | 72 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19                                                 | 73 28 28 28 28 28 28 28 28 28 28 28 28 28                  | 74 88<br>W 318<br>Tungsten 183.84                                                                         | 75 80 10 10 10 10 10 10 10 10 10 10 10 10 10 | 76 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8        | 77 18 18 18 18 18 18 18 18 18 18 18 18 18       | 78<br>Pt<br>Platinum<br>195.084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 79 Au 30 10 10 10 10 10 10 10 10 10 10 10 10 10 | 80 18<br>Hg<br>Mercury<br>200.59          | 81 58<br>Thailium 53<br>204,3833          | 82 28<br><b>Pb</b> 52<br>Lead 207.2                            | 83 <sup>2</sup><br><b>Bi</b> <sup>82</sup><br>Bismuth <sup>5</sup><br>205.96040 | 84 28<br>Polonium<br>(208.9624)            | 85 184 187<br>Astatine<br>(209.9871)    | 86 80 80 80 80 80 80 80 80 80 80 80 80 80       | RUNNOR    |
| 7                                                                                                                  | 87 18<br>Fr 10<br>Francium 1<br>(223)  | 88 15<br>Radium 2<br>(220)               | 89–103                              | 104 28<br>Rf 322<br>Rutherfordum 12<br>(261)                                                    | 105 000 000 000 000 000 000 000 000 000                    | 106 58<br>58<br>58<br>(288)<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>58 | 107 50<br>Bh 32<br>Bohrium 12<br>(284) 12    | 108 48<br>Hassium 12<br>(277) 10                | 109 18<br>Mt 32<br>Metnerium 12<br>(256)        | 110<br>Ds<br>Damstadium<br>(271)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 111<br>Rg<br>Romberium<br>(272)                 | 112<br>Uub 32<br>Ununbium 12<br>(285)     | 113<br>Uut<br>Ununthum<br>(284)           | 114<br>Uuq 18<br>Uuquadum 18<br>(289)                          | 115<br>Uup<br>Universium<br>(280)                                               | 116<br>Uuh<br>Ununhexium<br>(292)          | 117<br>Uus<br>Uhurseptum                | 118<br>Uuo<br>(294)                             | 0.00ZEr.N |
| For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses. |                                        |                                          |                                     |                                                                                                 |                                                            |                                                                                                           |                                              |                                                 |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                           |                                           |                                                                |                                                                                 |                                            |                                         |                                                 |           |
|                                                                                                                    |                                        |                                          |                                     | Design and Interface Copyright © 1997 Michael Dayah (michael@dayah.com). http://www.ptable.com/ |                                                            |                                                                                                           |                                              |                                                 |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                           |                                           |                                                                |                                                                                 |                                            |                                         |                                                 |           |
|                                                                                                                    | Dia                                    | bla                                      |                                     | 57 58<br>La 18<br>Lanthanum<br>138.90547                                                        | 58 Ce 10 P P P P P P P P P P P P P P P P P P               | 59<br>Pr<br>Paseodymium<br>140.90705                                                                      | 60 28<br>Nd 28<br>Neodymium 2<br>144.242     | 61 53<br>Pm 53<br>Promethium (145)              | 62 28<br>Sm 24<br>Samarium 22                   | 63<br>Eu<br>Europium<br>151.904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 64<br>Gd 12<br>Gadolinium 157.25                | 65 20 20 20 20 20 20 20 20 20 20 20 20 20 | 66 28<br>Dy 29<br>Dysprosium<br>162.500   | 67<br>Ho<br>Holmium<br>164.93032                               | 68 28<br>Er 30<br>Erbium 22<br>107.259                                          | 69 53<br>Tm 55<br>Thulium 108.93421        | 70 ************************************ | 71 28<br>Lu 38<br>Lutefium 2<br>174.9005        |           |
|                                                                                                                    |                                        | com                                      |                                     | 89 15<br>AC 15<br>Actinium 2<br>(227) 2                                                         | 90 28 18 18 18 18 18 18 18 18 18 18 18 18 18               | 91 18 18 18 18 18 18 18 18 18 18 18 18 18                                                                 | 92 35<br>U 35<br>Uranium 2<br>238.02891      | 93 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19 | 94 15<br>Pu 52<br>Piutonium 2<br>(244)          | 95<br>Am<br>Americium<br>(243)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 96<br>Cm<br>Curium<br>(247)                     | 97<br>Bk 327<br>Berkelium 2<br>(247)      | 98 28 28 28 28 28 28 28 28 28 28 28 28 28 | 99 28 182 29 22 20 20 20 20 20 20 20 20 20 20 20 20            | 100 100 100 100 100 100 100 100 100 100                                         | 101 10<br>Md 10<br>Nendelevium 10<br>(258) | 102<br>No<br>Nobelium<br>(259)          | 103 15<br>Lr 32<br>Lawrencium 2<br>(252)        |           |



8

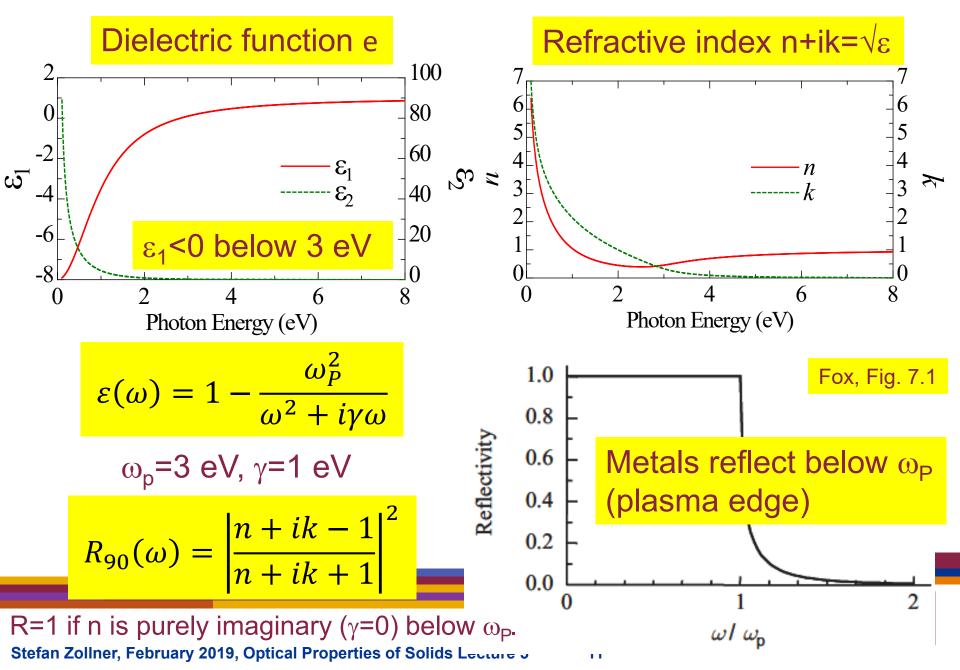
STAT

### **Atomic Radius**

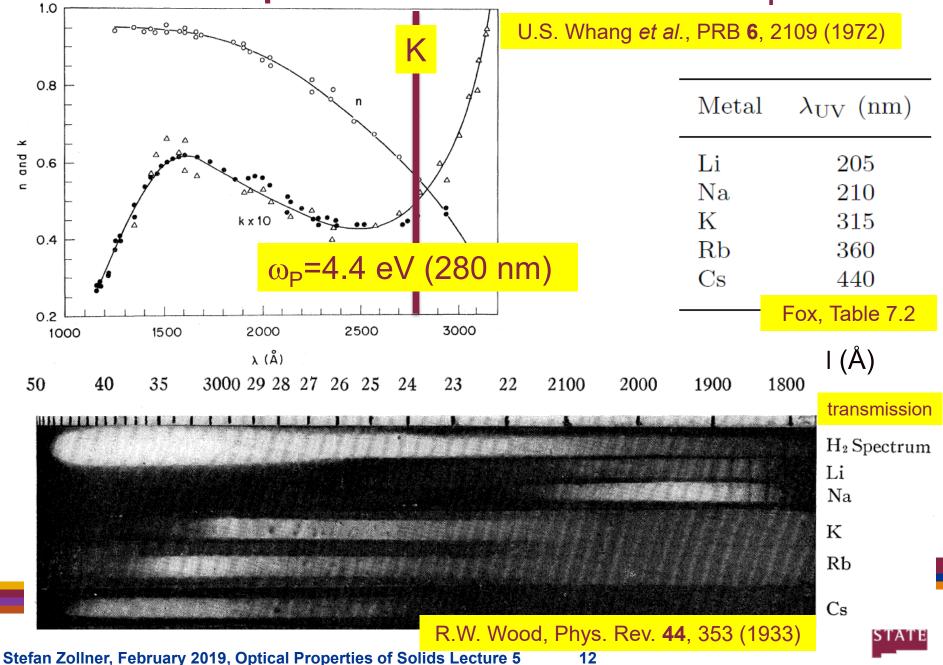


#### Atomic radius decreases from K to Ca to Cu.




#### (Unscreened) Plasma Frequency

| (                    | 18<br>16 | <ul> <li>alkali (valency 1)</li> <li>alkaline earth (valency 2)</li> <li>Al (valency 3)</li> <li>noble metals (valency 1)</li> </ul> |                    | $\omega_P^2 = \frac{n_f e^2}{m\varepsilon_0}$ |                                             |                                                 |                        |  |  |  |
|----------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------|---------------------------------------------|-------------------------------------------------|------------------------|--|--|--|
| ħω <sub>P</sub> (eV) | 14       |                                                                                                                                      | Metal              | Valency                                       | $\stackrel{N}{_{(10^{28}\mathrm{m}^{-3})}}$ | $\frac{\omega_{\rm p}/2\pi}{(10^{15}{\rm Hz})}$ | $\lambda_{\rm p}$ (nm) |  |  |  |
| 3                    | 10       |                                                                                                                                      | Li (77 K)          | 1                                             | 4.70                                        | 1.95                                            | 154                    |  |  |  |
| 4                    | 12       | -                                                                                                                                    | Na $(5 \text{ K})$ | 1                                             | 2.65                                        | 1.46                                            | 205                    |  |  |  |
|                      |          | - <u> </u>                                                                                                                           | K(5K)              | 1                                             | 1.40                                        | 1.06                                            | 282                    |  |  |  |
|                      | 10       | Cu,Mg                                                                                                                                | Rb(5K)             | 1                                             | 1.15                                        | 0.96                                            | 312                    |  |  |  |
|                      |          | Ag.Au                                                                                                                                | Cs(5K)             | 1                                             | 0.91                                        | 0.86                                            | 350                    |  |  |  |
|                      | 8        | Ca,Li<br>Na Sa Sh K                                                                                                                  | Cu                 | 1                                             | 8.47                                        | 2.61                                            | 115                    |  |  |  |
|                      | 0        | Ca,Li                                                                                                                                | Ag                 | 1                                             | 5.86                                        | 2.17                                            | 138                    |  |  |  |
|                      | 6        |                                                                                                                                      | Au                 | 1                                             | 5.90                                        | 2.18                                            | 138                    |  |  |  |
|                      |          | Cs,Rb,K                                                                                                                              | Be                 | 2                                             | 24.7                                        | 4.46                                            | 67                     |  |  |  |
|                      | 4<br>2   | • • • • • • • • • • • • • • • • • • • •                                                                                              | Mg                 | 2                                             | 8.61                                        | 2.63                                            | 114                    |  |  |  |
|                      | (        | D 5 10 15 20 25                                                                                                                      |                    | 2                                             | 4.61                                        | 1.93                                            | 156                    |  |  |  |
|                      |          | n (10 <sup>22</sup> cm <sup>-3</sup> )                                                                                               | Al                 | 3                                             | 18.1                                        | 3.82                                            | 79                     |  |  |  |
| × 7                  |          |                                                                                                                                      |                    |                                               | F                                           | ox, Table                                       | 7.1                    |  |  |  |


Valency determined by row in period table. Atomic radius decreases from K to Ca to Cu.



### **Free-Carrier Reflection/Absorption in Metals**



#### **Transparent Alkali Metals above** ω<sub>P</sub>



# **Bands of Total Reflection**

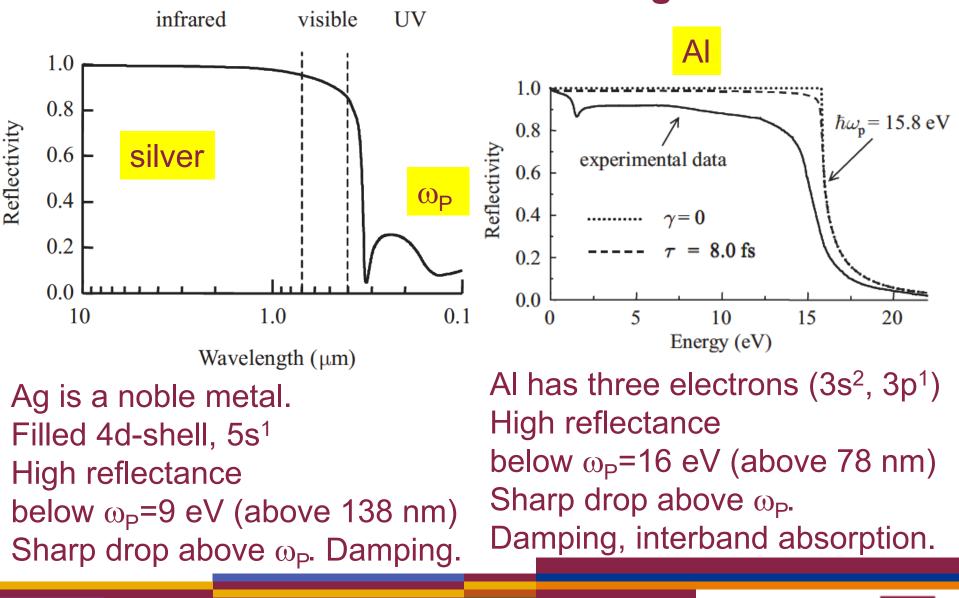
- Occur below plasma frequency and between TO/LO energies. Increased sensitivity to weak absorption processes.
- Drude model:

$$\varepsilon(\omega) = 1 - \frac{\omega_P^2}{\omega^2 + i\gamma\omega}$$

- Small damping ( $\gamma << \omega_P$ ):
- Low frequency ( $\omega < \omega_P$ ):
- Refractive index ( $\omega < \omega_P$ ):

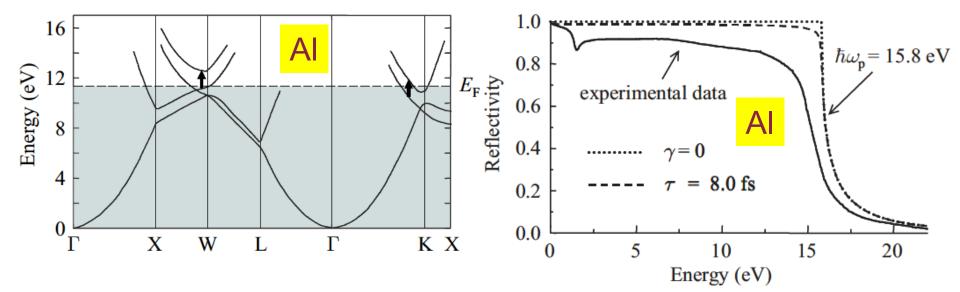
$$\varepsilon(\omega) = 1 - \frac{\omega_P^2}{\omega^2}$$
 (real, negative)  
 $\varepsilon(\omega) < 0$ 

(purely imaginary)


$$\tilde{n}(\omega) = \sqrt{\varepsilon(\omega)} = ik$$

Reflectance at 90° ( $\omega < \omega_P$ ):

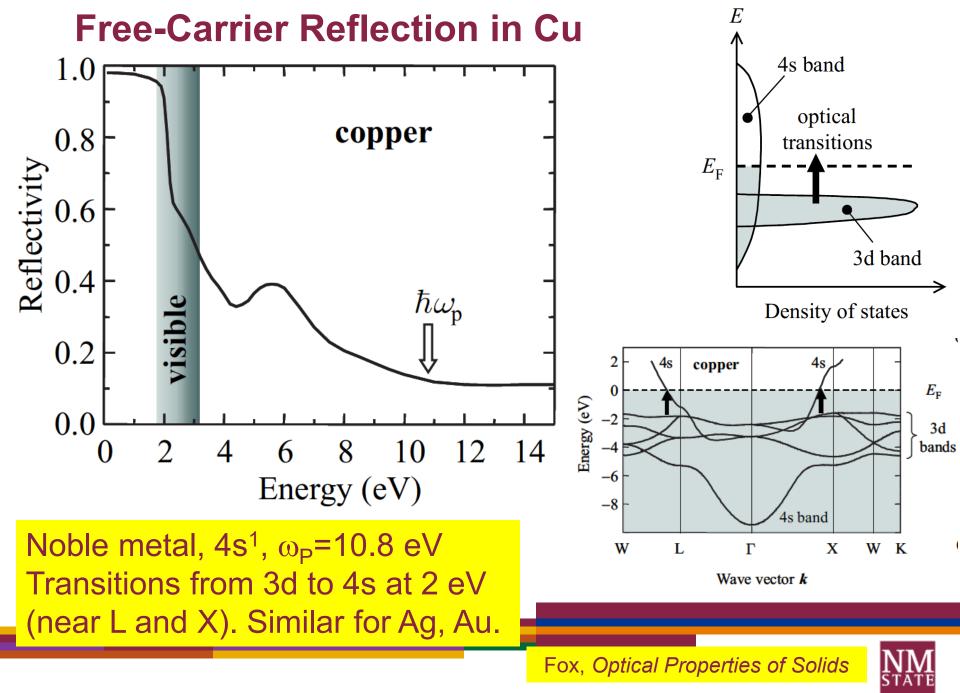
$$R_{90}(\omega) = \left|\frac{n+ik-1}{n+ik+1}\right|^2 = \left|\frac{ik-1}{ik+1}\right|^2 = \frac{(ik-1)(-ik-1)}{(ik+1)(-ik+1)} = 1$$



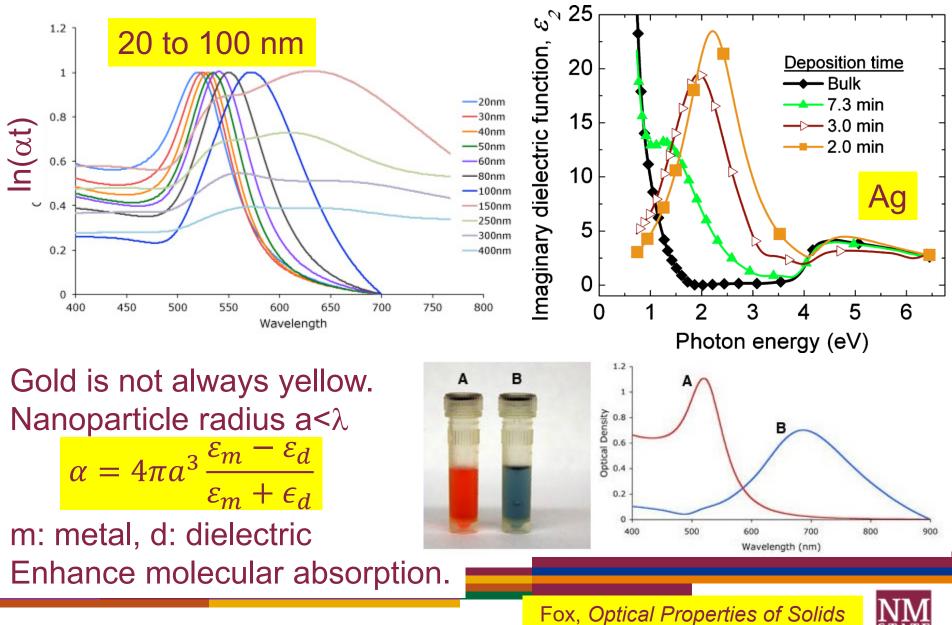

#### **Free-Carrier Reflection in Ag and Al**





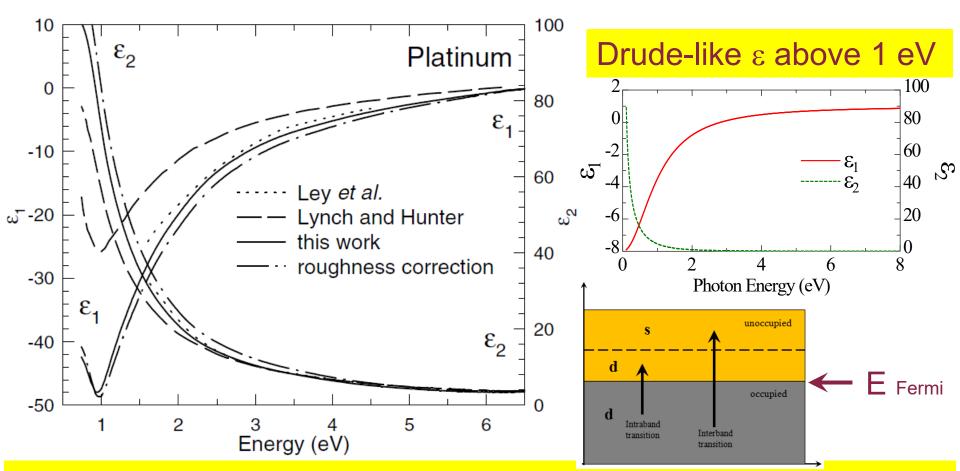

### **Free-Carrier Reflection in Al**




Interband transitions at W cause absorption band at 1.5 eV, lowers reflectivity. Al has three electrons  $(3s^2, 3p^1)$ High reflectance below  $\omega_P$ =16 eV (above 78 nm) Sharp drop above  $\omega_P$ . Damping, interband absorption.

 See also: G. Jungk, Thin Solid Films 234, 428 (1993).
 Fox, Optical Properties of Solids

 Stefan Zollner, February 2019, Optical Properties of Solids Lecture 5
 15

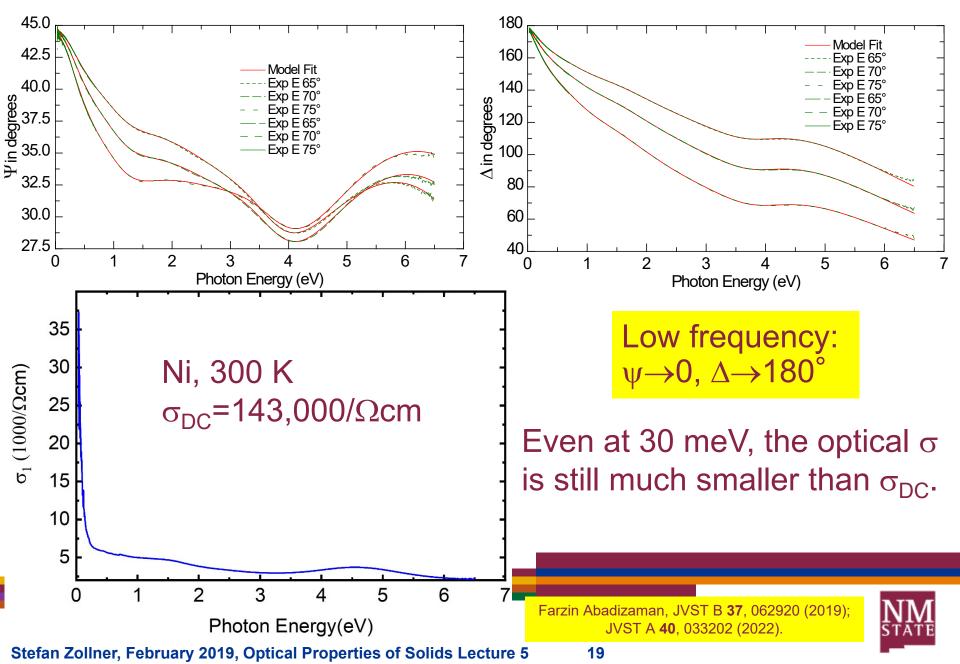



#### **Plasmon resonance in gold nanoparticles**

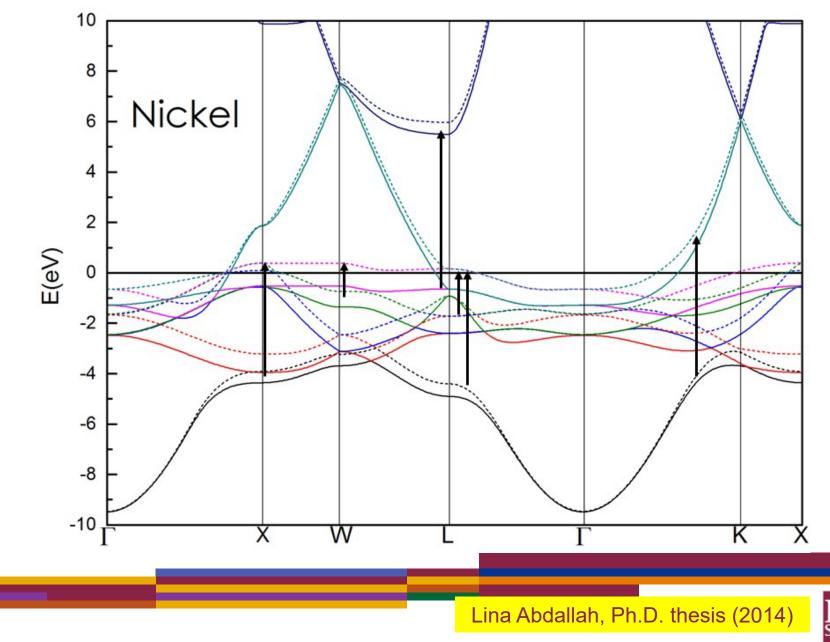


Little, APL 98, 101910 (2011)

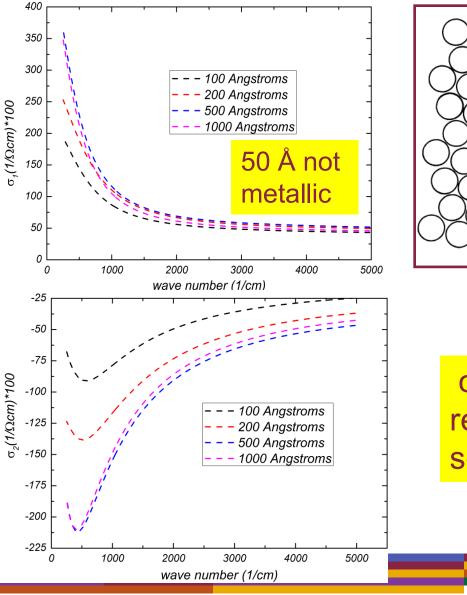
# **Dielectric function of transition metals (Pt)**



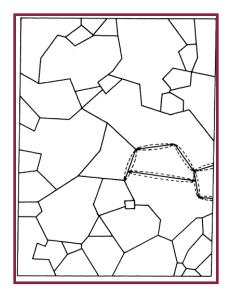

The dielectric function of Pt deviates from the Drude model below 1 eV due to d-interband transitions.


Pt is **not a noble metal**, partially filled d-shell.

S. Zollner, phys. stat. solidi (a) 177, R7 (2000)


#### **Dielectric function of transition metals (Ni)**




**Band structure of Ni; Interband transitions** 

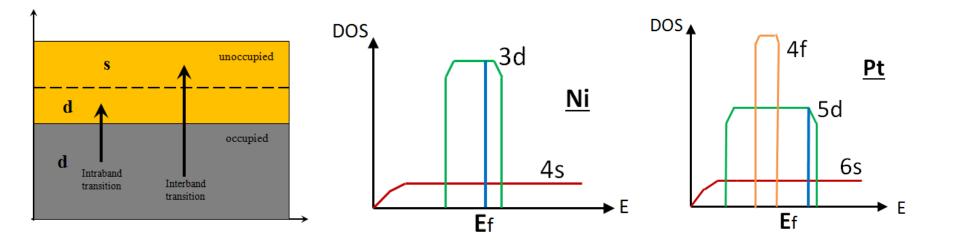


## **Thickness dependence of dielectric function (Ni)**



Stefan Zollner, February 2019, Optical Properties of Solids Lecture 5




σ<sub>1</sub><sup>↑</sup> with t<sup>↑</sup> reduced grain boundary scattering in thicker films

Ola Hunderi, PRB, 1973

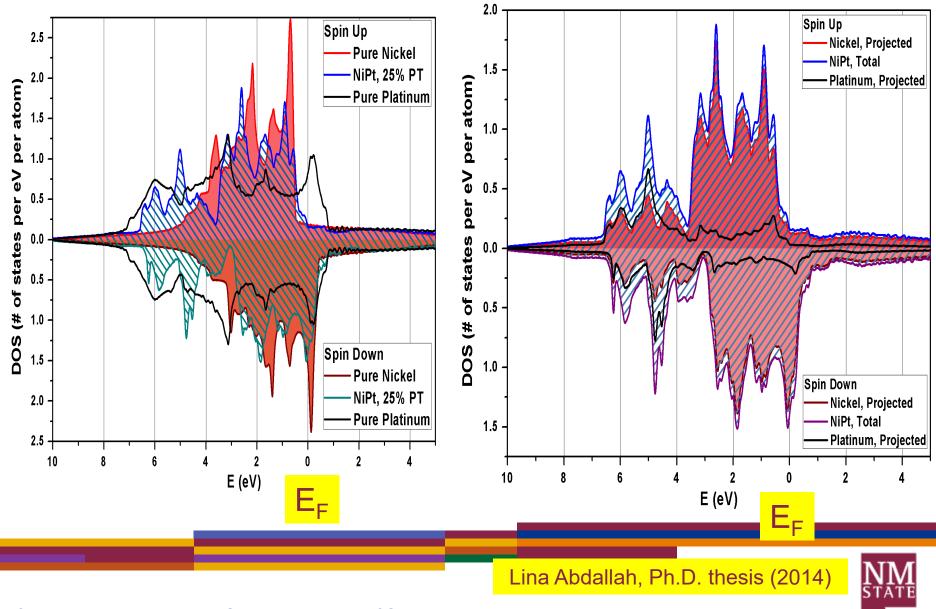
Lina Abdallah, Ph.D. thesis (2014)



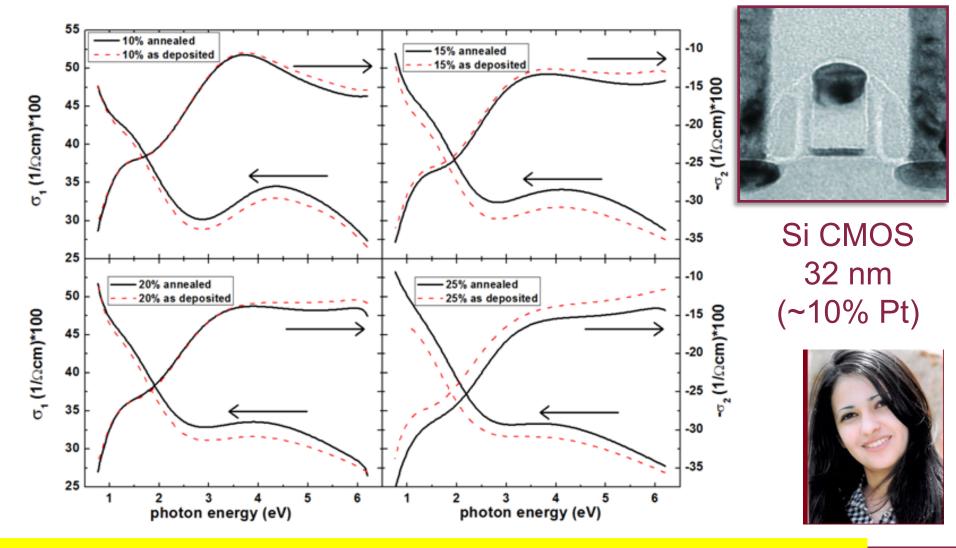
### **Difference between Ni and Pt**



Ni 3d states are more localized. Pt 5d states are broader, more dispersive.


Ni-Pt alloys have broader transitions than pure Ni.

- Alloy broadening: Potential fluctuations
- Initial Pt 5d states broader than Ni 3d states.


Lina Abdallah, Ph.D. thesis (2014)

## **Total DOS**

# Ni<sub>3</sub>Pt Projected DOS

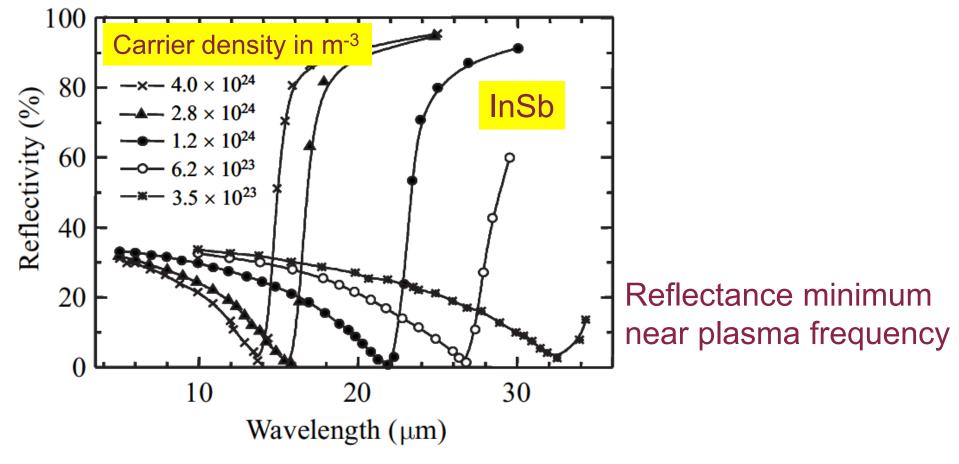


#### **Optical conductivity of Ni-Pt alloys**



Interband transitions broader in Ni-Pt alloys than in pure Ni.




Lina Abdallah, Ph.D. thesis (2014)

### Semiconductors

|                                                                                                                    | 1                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                       | 4                                                                                               | 5                                          | 6                                          | 7                                               | 8                                            | 9                                         | 10                                | 11                               | 12                                                              | 13                                       | 14                                                          | 15                                                                              | 16                                         | 17                                        | 18                                                                        |          |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|-------------------------------------------------|----------------------------------------------|-------------------------------------------|-----------------------------------|----------------------------------|-----------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------|----------|
| 1                                                                                                                  | 1 1<br>H<br>Hydrogen<br>1.00794           | Atomic #<br>Symbol<br>Name<br>Atomic Mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C Solid                                 |                                                                                                 |                                            |                                            |                                                 | Metals                                       |                                           |                                   |                                  |                                                                 |                                          |                                                             |                                                                                 |                                            |                                           | 2 <sup>2</sup><br>He<br>Helium<br>4.002002                                | К        |
| 2                                                                                                                  | 3 7<br>Li<br>Lithum<br>6.941              | 4 2<br>Be<br>Beryllium<br>9.012182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | Hg Liquid<br>H Gas                                                                              |                                            |                                            | hme                                             | anthanoids                                   |                                           | Poor metals                       | Noble gas<br>Other<br>nonmetals  |                                                                 | 5<br>B<br>Boron<br>10.811                | 6 2<br>Carbon<br>12.0107                                    | 7 <sup>2</sup><br>N<br>Nitrogen<br>14.0057                                      | 8 <sup>2</sup><br>0<br>0xygen<br>15.994    | 9 ‡<br>F<br>Fluorine<br>18.9984032        | 10 <sup>2</sup><br>Ne<br>Neon<br>20.1797                                  | K<br>L   |
| 3                                                                                                                  | 11 5<br>Na<br>Sodium<br>22.95976928       | 12 %<br>Mg<br>Magnesium<br>24.3060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Rf                                      | Unknow                                                                                          | 'n                                         | Alkali metals                              |                                                 |                                              |                                           |                                   | es .                             |                                                                 | 13<br>Al<br>Aluminium<br>28.9815388      | 14<br>Si<br>Silcon<br>28.0855                               | 15 <sup>2</sup><br>P<br>Phosphorus<br>30.973762                                 | 16 8<br>Sulfur<br>32.065                   | 17 2<br>Cl<br>Chlorine<br>35.453          | 18 8<br>Ar<br>Argon<br>39.948                                             | ×-L      |
| 4                                                                                                                  | 19 28<br>K 1<br>Potassium<br>39.0963      | 20 ta | 21 50<br>Scandum<br>44.955912           | 22 28<br><b>Ti</b><br>Titanium<br>47,887                                                        | 23 19<br>Vanadium<br>50.9415               | 24 28<br>Cr<br>Chromium<br>51.9961         | 25 8<br>Mn<br>Manganese<br>54.938045            | 26 8<br>Fe 12<br>Iron<br>55 845              | 27 58.933195                              | 28<br>Ni<br>Nickel<br>58.8934     | 29<br>Cu<br>Copper<br>63.546     | 30 <sup>2</sup><br>Zn <sup>13</sup><br><sup>2ino</sup><br>65.38 | 31<br>Gallum<br>69.723                   | 32<br>Ge<br>Gemanium<br>72.64                               | 33 2<br>As <sup>13</sup><br>Arsenic<br>74.82180                                 | 34 <sup>2</sup><br>Se<br>Selenium<br>78.90 | 35 5<br>Br<br>Bromine<br>79.904           | 36 <sup>2</sup><br>Kr<br><sup>Krypton</sup><br>83.798                     | K-MN     |
| 5                                                                                                                  | 37 88 18 18 18 18 18 18 18 18 18 18 18 18 | 38 8<br>Sr<br>Strontum<br>87.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 39 ************************************ | 40 30<br>Zr 20<br>21rconium<br>91.224                                                           | 41 18<br>Nb 10<br>Niobium<br>82,90538      | 42<br>Mo<br>Molybdenum<br>95.96            | 43<br>Tc                                        | 44 8 10 10 10 10 10 10 10 10 10 10 10 10 10  | 45 18 18 18 18 18 18 18 18 18 18 18 18 18 | 46<br>Pd<br>Paladium<br>106.42    | 47<br>Ag<br>Silver<br>107.8882   | 48 58 58 58 58 58 58 58 58 58 58 58 58 58                       | 49<br>In<br>Indium<br>114.818            | 50<br>Sn<br><sup>Tin</sup><br>118.710                       | 51 1<br><b>Sb</b> 15<br>Antimony<br>121.760                                     | 52 58<br>Telurum<br>127.60                 | 53 8<br>1001ne<br>128.90447               | 54 18<br>Xe 18<br>Xenon<br>131 293                                        | NUMPA    |
| 6                                                                                                                  | 55<br>Cs<br>Caesium<br>132,9054519        | 56 28 18 18 18 18 18 18 18 18 18 18 18 18 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 57–71                                   | 72 2<br>Hf 32<br>Hafnium<br>178.49                                                              | 73 18<br>Ta 18<br>180.94788 22             | 74 28<br>W 18<br>Tungeten<br>183.84        | 75 <b>Re</b><br>Rhenium<br>188.207              | 76 08 50 00 00 00 00 00 00 00 00 00 00 00 00 | 77 18 18 18 18 18 18 18 18 18 18 18 18 18 | 78<br>Pt 1<br>Platinum<br>195.084 | 79<br>Au<br>Gold<br>195.965569   | 80 10 10 10 10 10 10 10 10 10 10 10 10 10                       | 81 50<br>TI 50<br>Thailium 2<br>204.3833 | Pb 16<br>Lead 16<br>207.2                                   | 83 <sup>2</sup><br><b>Bi</b> <sup>15</sup><br>Biemuth <sup>5</sup><br>208,98040 | 84 28<br>Polonium<br>(208.9824) 6          | 85 18<br>At 18<br>(209.8871)              | 86 15<br>Rn 16<br>Raden (222.0176)                                        | RUZELA   |
| 7                                                                                                                  | 87 28<br>Fr 32<br>Francium 81<br>(223)    | 88 28<br>Ra 32<br>Radium 22<br>(226)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 89–103                                  | 104 28<br>Rf 32<br>Rutertodum 12<br>(281)                                                       | 105 18<br>Db 18<br>Dubnium 11<br>(262)     | 106<br>Sg<br>Seaborgium<br>(200)           | 107 50 50 50 50 50 50 50 50 50 50 50 50 50      | 108 28<br>Hs 32<br>Hassium 22<br>(277) 2     | 109<br>Mt 322<br>Metnerium (266)          | 110<br>Ds<br>Dametacium<br>(271)  | 111<br>Rg<br>Fortgonum<br>(272)  | 112<br>Uubbum<br>(285)                                          | 113<br>Uut<br>Ununtrium<br>(284)         | 114<br>Uuq <sup>18</sup><br>Uunnadun <sup>18</sup><br>(285) | 115<br>Uup<br>Unrpentum<br>(288)                                                | 116<br>Uuh<br>Ununhexium<br>(292)          | 117<br>Uus<br>Uhurseptum                  | 118<br>Uuo<br>(294)                                                       | 0.002Erx |
| For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses. |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                                                                                 |                                            |                                            |                                                 |                                              |                                           |                                   |                                  |                                                                 |                                          |                                                             |                                                                                 |                                            |                                           |                                                                           |          |
|                                                                                                                    |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | Design and Interface Copyright © 1997 Michael Dayah (michael@dayah.com). http://www.ptable.com/ |                                            |                                            |                                                 |                                              |                                           |                                   |                                  |                                                                 |                                          |                                                             |                                                                                 |                                            |                                           |                                                                           |          |
|                                                                                                                    | Dia                                       | bla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | 57<br>La<br>Lanthanum<br>138.90547                                                              | 58 18 18<br>Ce 19 1<br>Cerum<br>140.115    | 59<br><b>Pr</b><br>Paseodymum<br>140.90765 | 60 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16 | 61 53<br>Pm 53<br>Promethium (145)           | 62 50<br>Sm 53<br>Samarium 150.36         | 63<br>Eu<br>Europium<br>151.904   | 64<br>Gd<br>Gadolinium<br>157.25 | 65<br><b>Tb</b><br>Terbium<br>158.92535                         | 66 50<br>Dy<br>Dysprosium<br>162.500     | 67<br>Ho<br>Holmium<br>164.93032                            | 68 28<br>Er 30<br>Erbium 22<br>107.259                                          | 69 53<br>Tm 55<br>Thulum 108.93421         | 70 10 10 10 10 10 10 10 10 10 10 10 10 10 | 71 <sup>18</sup><br>Lu <sup>18</sup><br>Lutetium <sup>2</sup><br>174.9005 |          |
|                                                                                                                    | .(                                        | com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | 89 10 10 10 10 10 10 10 10 10 10 10 10 10                                                       | 90 5 15 15 15 15 15 15 15 15 15 15 15 15 1 | 91 18 18 18 18 18 18 18 18 18 18 18 18 18  | 92<br>U 35<br>Uranium 238.02891                 | 93<br><b>Np</b><br>Neptunium<br>(237)<br>93  | 94 15<br>Pu 32<br>Plutonium 2<br>(244)    | 95<br>Am<br>Americium<br>(243)    | 96<br>Cm<br>Curium<br>(247)      | 97<br>Bk<br>Berkelium<br>(247)                                  | 98<br>Cf<br>Californium<br>(251)         | 99 50 50 50 50 50 50 50 50 50 50 50 50 50                   | 100 100<br>Fm 30<br>Fermium 2<br>(257)                                          | 101 10<br>Md 32<br>Nendelevium 22<br>(258) | 102<br>No<br>Nobelium<br>(259)            | 103 15<br>Lr 32<br>Lawrencium 2<br>(262)                                  |          |



### **Free-Carrier Reflection in doped semiconductors**



Doped semiconductors behave just like a metal, except for the lower carrier density; **plasma frequency in infrared region.** 

Fox, Optical Properties of Solids



# Why infrared ellipsometry ?

#### <u>Advantages:</u>

- Measures amplitude  $\psi$  and phase  $\Delta$ .
- Direct access to complex  $\epsilon$  (no Kramers-Kronig transform).
- Modeling may contain depth information.
- No need to subtract substrate reference data.
- Anisotropy information (off-diagonal Jones and MM data)
- Possible measurements in a magnetic field (optical Hall effect)
- Obtain plasma frequency and scattering rate (B=0)
- Obtain *carrier density*, scattering rate, *effective mass*  $(B \neq 0)$ .

#### Disadvantages:

- Time-consuming (15 FTIR reflectance spectra)
- Requires polarizing elements (polarizer, compensator)
- Requires large samples (no focusing), at least 5 by 10 mm<sup>2</sup>
- Requires modeling for thin layer on substrate.
- Commercial instruments only down to 30 meV (250 cm<sup>-1</sup>)



# **Summary**

- Drude model explains optical response of metals.
- High reflectance below the plasma frequency.
- Interband transitions overlap with Drude absorption.
- Doped semiconductors have infrared plasma frequencies.
- Lorentz model explains infrared lattice absorption.
- TO/LO modes result in reststrahlen band.
- Multiple modes for complex crystal structures.

